nn.Linear(m,n) # fully connected layer from
# m to n units
nn.ConvXd(m,n,s) # X dimensional conv layer from
# m to n channels where Xâ·{1,2,3}
# and the kernel size is s
nn.MaxPoolXd(s) # X dimension pooling layer
# (notation as above)
nn.BatchNormXd # batch norm layer
nn.RNN/LSTM/GRU # recurrent layers
nn.Dropout(p=0.5, inplace=False) # dropout layer for any dimensional input
nn.Dropout2d(p=0.5, inplace=False) # 2-dimensional channel-wise dropout
nn.Embedding(num\_embeddings, embedding\_dim) # (tensor-wise) mapping from
# indices to embedding vectors
Comments
Related