Table of Contents
Quadratic Bezier Curve
Syntax
var bezier = BABYLON.Curve3.CreateQuadraticBezier(origin, control, destination, nb_of_points);
Parameters
Below are parameters related to the Quadratic Bezier Curve:
Origin
− The origin point for the curve.Control
− Control points for the curve.Destination
− Destination point.Noofpoints
− Points in the array.
Cubic Bezeir Curve
Syntax
var bezier3 = BABYLON.Curve3.CreateCubicBezier(origin, control1, control2, destination, nb_of_points)
Parameters
Below are parameters related to the Cubic Bezier Curve:
Origin
− Origin point.control1
− The first control point in vector form.control2
− The second control point in vector form.Destination
− Destination point in vector form.no_of_points
− The number of points in array form.
HermiteSpline Curve
Syntax
var hermite = BABYLON.Curve3.CreateHermiteSpline(p1, t1, p2, t2, nbPoints);
Parameters
Below are parameters related to the Hermite Spline Curve :
p1
− The origin point for the curve.t1
− The origin tangent vector point.p2
− Destination point.t2
− Destination tangent vector.NbPoints − The array
of points for the final curve.
Catmull-Rom Spline Curve
Syntax
var nbPoints = 20; // the number of points between each Vector3 control points var points = [vec1, vec2, ..., vecN]; // an array of Vector3 the curve must pass through : the control points var catmullRom = BABYLON.Curve3.CreateCatmullRomSpline(points, nbPoints);
Parameters
Below are parameters related to the Catmull-Rom Spline Curve:
Points
− An array of Vector3, the curve must pass through the control points.NbPoints
− The number of points between each Vector3 control points.
var path = catmullRom.getPoints(); // getPoints() returns an array of successive Vector3. var l = catmullRom.length(); // method returns the curve length.